4. Models and Truth

(a) The smallest possible domain that can make each formula true has
2 elements: D = {one,two}. A! = one, Bl = two, CT = two,
P! = {one}, Q' = {one}.

iff T;(A) € P!

iff one € {one}, which is true.
o Fy —Q(B)

ifft ¥y Q(B)

iff 7/(B) & Q'
iff two ¢ {one}, which is true.

4

Pranay Mundra

o Fy —Q(A) vV -Q(C)
iff #yr Q(A) or ¥y Q(C)
iff 7;(A) ¢ Q" or T;(C) £ Q'
iff one & {one} or two ¢ {one}, which is true.
o Ey Va.P(z) = Q(x)
iff for all v.a.’s U and all d € D, Fy (P(z) = Q(x))[Usd]
iff for all d € D, ¥y P(x)[Usa] or Epy Q(2)[Us.d]
iff for all d € D, TIUz:d(m) g Pl or TIUM(x) S QI
iff for all d € D, d & {one} or d € {one}, which is true.

(b) The smallest possible domain that can make each formula false has

2 elements: D = {one,two}. Al = one, B! = one, C! = one,
P! = {two}, Q' = {one}.
[] #M' P(A)

iff T7(A) ¢ P!
iff one & {two}, which is true.
[} #M' —|Q<B)
iff Eu Q(B)
iff T;(B) € Q'
iff one € {one}, which is true.
o Far ~Q(A) V -Q(C)
iff T](A) S QI and T[(C) S QI
iff one € {one} and one € {one}, which is true.
o Fyp Va.P(x) = Q(x)
iff for all v.a.’s U and all d € D, Fyp (P(x) = Q(z))[Us.4
iff for some d € D, Epp P(x)[Upq] and Eyp Q(2)[Us.d]
iff for some d € D, Tyy, ,(z) € P' and Ty, ,(z) € Q'
iff for some d € D, d € {two} and d & {one}, which is true for d = two.
(c) One first-order language is defined by the vocabulary:

Y = {Circle, Triangle, Contained- Within, Left-Of, Right-Of, C1,C2,T1,T2}

5

A FOL description of the picture in this language might be:

Clircle(C1) A Circle(C2) A Triangle(T1) A Triangle(T2)

A Contained- Within(T1,C1) A Contained- Within(C2,T?2)

A Left-Of(C1,T2) A Left-Of(T1,T2) A Left-Of(C1,C2) A Left-Of(T1, C2)
AVz,y. Left-Of(x,y) = Right-Of(y, x)

(d) Fu (Vzo)[U]

iff for all d € D, Fyr ¢[U,.q4] (by satisfaction conds for 'V’)

iff not for some d € D, ¥y ¢[U,.q

iff not for some d € D, Ey —¢[U,.q) (by satisfaction conds for =)
iff not Fy (Jz—¢)[U] (by satisfaction conds for '3)

iff Fyr (—3z—¢)[U] (by satisfaction conds for '—)

(e) Far —(¢ = ¥)[U]

iff ¥y (¢ =)[U] (by satisfaction conds for ')

iff Ey o[U] and ¥, ¢[U] (by satisfaction conds for > = 7)
iff Fa ¢[U] and Fy —[U] (by satisfaction conds for =)
iff Eyr (0 A —)[U] (by satisfaction conds for > A7)

(f) Far (z = AN P(x))[U]

iff Fyr (x=A)[U] and Fy P(x)[U] (by satisfaction conds for > A)

iff Ty (x) = Try(A) and Trp(z) € P (by satisfaction conds for equality /predicates)
iff Try(z) = Ty (A) and Ty (A) € P! (substitution of equals)

iff Fy (x = A)[U] and Fy P(A)[U] (by satisfaction conds for equality/predicates)
iff Fy (x= AN P(A))[U] (by satisfaction conds for > A)

5. Validity and Entailment

(a) (i) Not valid. For a model M, Ey Thing(A) iff AT € Thing'.
Clearly, one can create a model where this is not true, such as
one in which Thing’ = {}.

(ii) Valid. For a model M, Ey; (Zod = Zod) iff Zod' = Zod", which
is clearly true regardless of which M is chosen.

Pranay Mundra

(iv)

(i)

Valid. For a model M, Ej; Vx.Rose(x) = Rose(z) iff for all v.a.’s
U and for all d € D, Ey (Rose(x) = Rose(x))[Uy.q], which is true
iff for all d € D, ¥y Rose(x)[Uy.q| or Ey Rose(x)[Uy.q). Clearly

this is true regardless of which M is chosen.

This entailment holds. Suppose F5; {P(A), A = B}. Then, by
the truth conditions for each formula, we have A’ € P! and
Al = B! Substituting equal terms, B! € P!, therefore Fj;
P(B). Since every model of {P(A), A = B} is a model of P(B),
{P(A),A= B} F P(B).

This entailment holds. Suppose Fy; Vo P(x). Then, for all v.a.’s
U and for all d € D, Ep P(2)[U,.q). This is true iff for all d € D,
T, ,(x) € P, iff for all d € D, d € P'. Since A’ € D, this
means that A’ € P!, Therefore, by the satisfaction condition for
predicates, Fys P(A). Hence, Ve P(z) F P(A).

This entailment holds. Suppose Fj; P(A). Then, AT € PI. Tt
follows that for some d € D, d € P!. So for all v.a.’s U and
for some d € D, Tiyz.a(x) € PL. Therefore, by the satisfaction
condition for existential quantifiers, F; 3xP(z). Hence, P(A) E
JxP(x).

This entailment holds. We have already proven in Problem 4,
part (d) that Fy (Vzo)[U] iff Fyr (—32—¢)[U]. Since this proof
shows that any model M of the former must also be a model of
the latter, it follows trivially that Va¢ F —Jz—¢.

1. Semantics

(a) (i) Valid.

e For a model M, Fy; P(A) = (Q(A) = P(A)) iff #yr P(A) or
Far Q(A) = P(A) [truth conditions of =|

e This is true iff ¥y, P(A) or ¥y Q(A) or Fy P(A) [truth
conditions of =]

e It’s clearly true that either ¥, P(A) or Fy P(A) holds for
M, and since M was arbitrarily chosen, this is true for any
model M. Therefore, the formula is valid.

(ii) Contingent.

e For a model M, Fy; (VxP(x)) VvV (Vx—P(x)) iff Ey (VzP(z))
or Fy (Vz=P(z)) [truth conditions of V|

e This is true iff for all v.a.’s U and all d € D, E; P(x)[U,.q), or
for all v.a.’s U and all d € D, ¥y P(x)[U,.q) [truth conditions
of V|

e This is true iff for all d € D, d € P!, or for all d € D, d & P!
[truth conditions of predicates]

e One can construct a model My in which this is true, by setting
PT = D. One can also construct a model My in which this
is not true, for instance one in which D = {one,two} and
P! = {one}. Because there exists some models in which the
formula is true, and some in which it is false, the formula is
contingent.

(iii) Unsatisfiable.

e For a model M, F); Jz—(z = z) iff for all v.a.’s U and for
some d € D, Fyr —(x = x)[U,.q] [truth conditions of 3|

e This is true iff for all v.a.’s U and for some d € D,) (v =
z)[Uy.q) [truth conditions of |

e This is true iff for all v.a.’s U and for some d € D, Ty, ,(z) #
Try,.,(x) [truth conditions of equality predicate]

e This is true iff for all v.a.’s U and for some d € D, d # d
|application of Tyy]

e Since D is nonempty, let a € D be some arbitrary individual
from the domain. It is trivially true that a = a, so there exists

Len Schubert
by Ben Kane

Pranay Mundra

some d € D such that d = d, hence Fy; Joz—(z = x) is false.
Since M is arbitrary, the formula must be false in all models,
therefore it is unsatisfiable.

The BNF syntax of FOL for formulas would need to be ex-
tended with a rule for a predicate modifier being applied to

a single predicate constant applied to a single term, as well

as a rule for predicate modifiers. One possible syntax is the
following;:

(formula) == ((predicate modifier) (predicate constant)({term)))

(predicate modifier) ::= Fake | White | Red | ...

The interpretation of the predicate modifier would be a func-
tion f € Pow(D) — Pow(D). That is, a predicate modifier
denotes some mapping from each possible subset of the do-
main (recall that the interpretation of predicates are domain
subsets) to some new subset of the domain.

For example, suppose we have:

D = {Snoopy, Tulip, Rose, SnoopyActionFigure, LegoTulip, PlasticRose}

with predicates Dog’ = {Snoopy} and Flower! = {Tulip, Rose}.
Consider Fake!. One possible interpretation of Fake would
be a function f s.t. f({Snoopy}) = {SnoopyActionFigure}
and f({Tulip, Rose}) = { LegoT'ulip, PlasticRose}. Note that
Fake' does have to be a total function according to the above
definition, so all other elements of the powerset of D could
simply map to themselves.

The satisfaction condition for predicate modifiers would be:
for a model M and variable assignment U, F,, (67 (7))[U] iff
Trv (1) € 01 (nh), where 6 is some predicate modifier.

The BNF syntax of FOL would need to be extended with the
following rules. We omit the rule for <char*> in the following
grammar, and simply assume that it can be any arbitrary
sequence of characters, excluding ”. Also <quote> is used in
place of 7 due to bugs with the BNF Latex package I was
using...

(term) ::= (quote) (char*) (quote)

(term) ::= concat((term), (term))

(formula) ::= Substring((term), (term))
First, we need to extend D to contain all possible strings. Let
set S represent the set of all possible strings (note that this

set necessarily includes all possible concatenations of strings
within the set). Then, S C D.

The semantics of strings, and of functions/predicates applied
to strings, are independent of I, so I does not need to be
extended.

e We need to give an extension of Ty for terms involving strings:

Try(T) = 7 if 7 is a string
Tru(concat(m, 72)) = s, where s is the concatenation of Ty (7)) and Ty (1)

We also need to extend satisfaction conditions for the Sub-
string predicate:

For a model M and variable assignment U, F,; Substring(o,7)[U]
iff Ty (o) is a substring of Ty (7)

2. Soundness of inference rules

(a) Sound.

e The inference rule is sound iff Vx.Thing(z) E 3x.Thing(x). That
is, if for every model M such that Fy; V. Thing(z), Fyr 2. Thing(z).

e Let M be some arbitrary model. F,; Vz.Thing(z) iff for all v.a.
U and all d € D, Fyr Thing(z)[U,.q4) [truth conditions of V|

e If this is true, however, then it follows that for all v.a. U and
some d € D, Fyr Thing(z)[U,.d4

e This is true iff Fy; 2. Thing(x) [truth conditions of 3|

e Therefore, for some arbitrary model M such that =y, Vo Thing(z),
Fy Jx.Thing(x). Hence, Va.Thing(x) F 3x.Thing(x), so the in-
ference rule is sound.

(b) Unsound.

e The inference rule is sound iff Dog(Snoopy) F Jx.Animal(z). To
show that this is false, it suffices to find some model M such that
Eu Dog(Snoopy) but ¥y Jz. Animal(z).

e One such model is D = {one}, Snoopy’ = one, Dog" = {one},
Animal® = {}.

e Ey Dog(Snoopy) iff Snoopy’ € Dog’, iff one € {one}, [truth
conditions of predicates|, which is true.

o #y Jx.Animal(z) iff it is not the case that for all v.a.’s U and
for some d € D, Animal(z)[U,.q) [truth conditions of 3|, iff it is
not the case that for some d € D, d € Animal’, iff it is not the
case that for some d € D, d € {}, [truth conditions of predicates],
which is true.

e Therefore, there exists a model M such that Fy Dog(Snoopy)
but ¥, Jx.Animal(z). Hence, Dog(Snoopy) ¥ Jz.Animal(z),
so the inference rule is unsound.

3. Deduction using several forward inference rules

1. Loves(Juliet, Romeo) A

2. (Vz(Yy(Loves(x,y) V Ignores(x,y)))) A

3. (Vaz(Loves(z, Romeo) = —Ignores(Romeo, x))) A

4. (Yy(Loves(Romeo,y) V Ignores(Romeo,y))) Ul 2

5. Loves(Juliet, Romeo) = —Ignores(Romeo, Juliet) UI, 3

6. Loves(Romeo, Juliet) V Ignores(Romeo, Juliet) Ul 4

7. —Ignores(Romeo, Juliet) MP, 1,5
8. Loves(Romeo, Juliet) MTP, 6, 7
9.

(Jz(Loves(Romeo, x))) EG, 8

Pranay Mundra

