
this by extending FOL with a ”kind” operator, e.g. Widespread(k :
Mosquito(x), which takes a unary predicate such as Mosquito (in
this case with a free variable, although the syntax is ad hoc) and
maps it to a single individual representing the abstract kind de-
noted by the predicate.

g. Similarly to the previous example, the issue here is the impossi-
bility of making propositions about types of actions, such as copy-
ing, in FOL. Ideally, we would want a ”kind” operator for actions
which maps some binary predicate to an individual in the do-
main, perhaps similarly to the previous example: Forbidden(ka :
Copy(x, y)). Again, the syntax here is ad-hoc.

h. The issue here is closely related to the issue in (f). In this case, the
extension of Wookiee (the set denoted by Wookiee) is the empty
set: a Wookiee is not an individual which actually exists in the
real domain. Nonetheless, we need ways to represent intensional
predicates such as ”resembles”, which may for instance take a kind
of thing, or an idea of a thing, as arguments as well as specific
individuals (e.g. ”his father”).

i. The issue here is very similar to (e). We cannot use FOL to
express that Jack nearly had an accident, as that would require
referring to an ”accident” individual which is in fact not a member
of the interpretation of ”accident”, since it did not in fact take
place.

j. ”Perhaps” here is another modal operator, as in (c). Tradition-
ally, possibility is represented in modal logic as ⌃p, i.e. ”it is
possible that p”, and again relies on possible world semantics.

4. Models and Truth

(a) The smallest possible domain that can make each formula true has
2 elements: D = {one, two}. AI = one, BI = two, CI = two,
P I = {one}, QI = {one}.
• ✏M P (A)

i↵ TI(A) 2 P I

i↵ one 2 {one}, which is true.

• ✏M ¬Q(B)

i↵ 2M Q(B)

i↵ TI(B) 62 QI

i↵ two 62 {one}, which is true.

4

Pranay Mundra

• ✏M ¬Q(A) _ ¬Q(C)

i↵ 2M Q(A) or 2M Q(C)

i↵ TI(A) 62 QI or TI(C) 62 QI

i↵ one 62 {one} or two 62 {one}, which is true.

• ✏M 8x.P (x)) Q(x)

i↵ for all v.a.’s U and all d 2 D, ✏M (P (x)) Q(x))[Ux:d]

i↵ for all d 2 D, 2M P (x)[Ux:d] or ✏M Q(x)[Ux:d]

i↵ for all d 2 D, TIUx:d
(x) 62 P I or TIUx:d

(x) 2 QI

i↵ for all d 2 D, d 62 {one} or d 2 {one}, which is true.

(b) The smallest possible domain that can make each formula false has
2 elements: D = {one, two}. AI = one, BI = one, CI = one,
P I = {two}, QI = {one}.
• 2M 0 P (A)

i↵ TI(A) 62 P I

i↵ one 62 {two}, which is true.

• 2M 0 ¬Q(B)

i↵ ✏M 0 Q(B)

i↵ TI(B) 2 QI

i↵ one 2 {one}, which is true.

• 2M 0 ¬Q(A) _ ¬Q(C)

i↵ ✏M 0 Q(A) and ✏M 0 Q(C)

i↵ TI(A) 2 QI and TI(C) 2 QI

i↵ one 2 {one} and one 2 {one}, which is true.

• 2M 0 8x.P (x)) Q(x)

i↵ for all v.a.’s U and all d 2 D, 2M 0 (P (x)) Q(x))[Ux:d]

i↵ for some d 2 D, ✏M 0 P (x)[Ux:d] and 2M 0 Q(x)[Ux:d]

i↵ for some d 2 D, TIUx:d
(x) 2 P I and TIUx:d

(x) 62 QI

i↵ for some d 2 D, d 2 {two} and d 62 {one}, which is true for d = two.

(c) One first-order language is defined by the vocabulary:

⌃ = {Circle, T riangle,Contained-Within,Left-Of,Right-Of, C1, C2, T1, T2}

5

A FOL description of the picture in this language might be:

Circle(C1) ^ Circle(C2) ^ Triangle(T1) ^ Triangle(T2)

^ Contained-Within(T1, C1) ^ Contained-Within(C2, T2)

^ Left-Of(C1, T2) ^ Left-Of(T1, T2) ^ Left-Of(C1, C2) ^ Left-Of(T1, C2)

^ 8x, y.Left-Of(x, y)) Right-Of(y, x)

(d) ✏M (8x�)[U]

i↵ for all d 2 D, ✏M �[Ux:d] (by satisfaction conds for ’8’)
i↵ not for some d 2 D, 2M �[Ux:d]

i↵ not for some d 2 D, ✏M ¬�[Ux:d] (by satisfaction conds for ’¬’)
i↵ not ✏M (9x¬�)[U] (by satisfaction conds for ’9’)
i↵ ✏M (¬9x¬�)[U] (by satisfaction conds for ’¬’)

(e) ✏M ¬(�))[U]

i↵ 2M (�))[U] (by satisfaction conds for ’¬’)
i↵ ✏M �[U] and 2M [U] (by satisfaction conds for ’) ’)

i↵ ✏M �[U] and ✏M ¬ [U] (by satisfaction conds for ’¬’)
i↵ ✏M (� ^ ¬)[U] (by satisfaction conds for ’ ^ ’)

(f) ✏M (x = A ^ P (x))[U]

i↵ ✏M (x = A)[U] and ✏M P (x)[U] (by satisfaction conds for ’ ^ ’)

i↵ TIU(x) = TIU(A) and TIU(x) 2 P I (by satisfaction conds for equality/predicates)

i↵ TIU(x) = TIU(A) and TIU(A) 2 P I (substitution of equals)

i↵ ✏M (x = A)[U] and ✏M P (A)[U] (by satisfaction conds for equality/predicates)

i↵ ✏M (x = A ^ P (A))[U] (by satisfaction conds for ’ ^ ’)

5. Validity and Entailment

(a) (i) Not valid. For a model M , ✏M Thing(A) i↵ AI 2 ThingI .
Clearly, one can create a model where this is not true, such as
one in which ThingI = {}.

(ii) Valid. For a model M , ✏M (Zod = Zod) i↵ ZodI = ZodI , which
is clearly true regardless of which M is chosen.

(iii) Valid. For a model M , ✏M 9x.x = x i↵ for all v.a.’s U and
for some d 2 D, TIUx:d

(x) = TIUx:d
(x), which is true i↵ for some

d 2 D, d = d. Clearly this is true regardless of which M is chosen.

6

Pranay Mundra

(iv) Valid. For a model M , ✏M 8x.Rose(x)) Rose(x) i↵ for all v.a.’s
U and for all d 2 D, ✏M (Rose(x)) Rose(x))[Ux:d], which is true
i↵ for all d 2 D, 2M Rose(x)[Ux:d] or ✏M Rose(x)[Ux:d]. Clearly
this is true regardless of which M is chosen.

(b) (i) This entailment holds. Suppose ✏M {P (A), A = B}. Then, by
the truth conditions for each formula, we have AI 2 P I and
AI = BI . Substituting equal terms, BI 2 P I , therefore ✏M

P (B). Since every model of {P (A), A = B} is a model of P (B),
{P (A), A = B} ✏ P (B).

(ii) This entailment holds. Suppose ✏M 8xP (x). Then, for all v.a.’s
U and for all d 2 D, ✏M P (x)[Ux:d]. This is true i↵ for all d 2 D,
TIUx:d

(x) 2 P I , i↵ for all d 2 D, d 2 P I . Since AI 2 D, this
means that AI 2 P I . Therefore, by the satisfaction condition for
predicates, ✏M P (A). Hence, 8xP (x) ✏ P (A).

(iii) This entailment holds. Suppose ✏M P (A). Then, AI 2 P I . It
follows that for some d 2 D, d 2 P I . So for all v.a.’s U and
for some d 2 D, TIUx:d(x) 2 P I . Therefore, by the satisfaction
condition for existential quantifiers, ✏M 9xP (x). Hence, P (A) ✏
9xP (x).

(iv) This entailment holds. We have already proven in Problem 4,
part (d) that ✏M (8x�)[U] i↵ ✏M (¬9x¬�)[U]. Since this proof
shows that any model M of the former must also be a model of
the latter, it follows trivially that 8x� ✏ ¬9x¬�.

7

CSC 244/444

Assignment 2 Solutions

1. Semantics

(a) (i) Valid.
• For a model M , ✏M P (A)) (Q(A)) P (A)) iff 2M P (A) or
✏M Q(A)) P (A) [truth conditions of)]

• This is true iff 2M P (A) or 2M Q(A) or ✏M P (A) [truth
conditions of)]

• It’s clearly true that either 2M P (A) or ✏M P (A) holds for
M , and since M was arbitrarily chosen, this is true for any
model M . Therefore, the formula is valid.

(ii) Contingent.
• For a model M , ✏M (8xP (x)) _ (8x¬P (x)) iff ✏M (8xP (x))

or ✏M (8x¬P (x)) [truth conditions of _]
• This is true iff for all v.a.’s U and all d 2 D, ✏M P (x)[Ux:d], or

for all v.a.’s U and all d 2 D, 2M P (x)[Ux:d] [truth conditions
of 8]

• This is true iff for all d 2 D, d 2 P
I , or for all d 2 D, d 62 P

I

[truth conditions of predicates]
• One can construct a model MT in which this is true, by setting
P

I = D. One can also construct a model MF in which this
is not true, for instance one in which D = {one, two} and
P

I = {one}. Because there exists some models in which the
formula is true, and some in which it is false, the formula is
contingent.

(iii) Unsatisfiable.
• For a model M , ✏M 9x¬(x = x) iff for all v.a.’s U and for

some d 2 D, ✏M ¬(x = x)[Ux:d] [truth conditions of 9]
• This is true iff for all v.a.’s U and for some d 2 D, 2M (x =
x)[Ux:d] [truth conditions of ¬]

• This is true iff for all v.a.’s U and for some d 2 D, TIUx:d
(x) 6=

TIUx:d
(x) [truth conditions of equality predicate]

• This is true iff for all v.a.’s U and for some d 2 D, d 6= d

[application of TIU]
• Since D is nonempty, let a 2 D be some arbitrary individual

from the domain. It is trivially true that a = a, so there exists

1

Len Schubert
by Ben Kane

Pranay Mundra

some d 2 D such that d = d, hence ✏M 9x¬(x = x) is false.
Since M is arbitrary, the formula must be false in all models,
therefore it is unsatisfiable.

(b) (i) • The BNF syntax of FOL for formulas would need to be ex-
tended with a rule for a predicate modifier being applied to
a single predicate constant applied to a single term, as well
as a rule for predicate modifiers. One possible syntax is the
following:
hformulai ::= (hpredicate modifieri hpredicate constanti(htermi))

hpredicate modifieri ::= Fake | White | Red | ...
• The interpretation of the predicate modifier would be a func-

tion f 2 Pow(D) 7! Pow(D). That is, a predicate modifier
denotes some mapping from each possible subset of the do-
main (recall that the interpretation of predicates are domain
subsets) to some new subset of the domain.
For example, suppose we have:

D = {Snoopy, Tulip, Rose, SnoopyActionF igure, LegoTulip, P lasticRose}

with predicates Dog
I = {Snoopy} and Flower

I = {Tulip, Rose}.
Consider Fake

I . One possible interpretation of Fake would
be a function f s.t. f({Snoopy}) = {SnoopyActionF igure}
and f({Tulip, Rose}) = {LegoTulip, P lasticRose}. Note that
Fake

I does have to be a total function according to the above
definition, so all other elements of the powerset of D could
simply map to themselves.

• The satisfaction condition for predicate modifiers would be:
for a model M and variable assignment U , ✏M (✓⇡(⌧))[U] iff
TIU(⌧) 2 ✓

I(⇡I), where ✓ is some predicate modifier.
(ii) • The BNF syntax of FOL would need to be extended with the

following rules. We omit the rule for <char*> in the following
grammar, and simply assume that it can be any arbitrary
sequence of characters, excluding ”. Also <quote> is used in
place of ” due to bugs with the BNF Latex package I was
using...
htermi ::= hquotei hchar* i hquotei

htermi ::= concat(htermi, htermi)

hformulai ::= Substring(htermi, htermi)
• First, we need to extend D to contain all possible strings. Let

set S represent the set of all possible strings (note that this

2

set necessarily includes all possible concatenations of strings
within the set). Then, S ✓ D.
The semantics of strings, and of functions/predicates applied
to strings, are independent of I, so I does not need to be
extended.

• We need to give an extension of TIU for terms involving strings:

TIU(⌧) = ⌧ if ⌧ is a string
TIU(concat(⌧1, ⌧2)) = s, where s is the concatenation of TIU(⌧1) and TIU(⌧2)

We also need to extend satisfaction conditions for the Sub-
string predicate:

For a model M and variable assignment U , ✏M Substring(�, ⌧)[U]

iff TIU(�) is a substring of TIU(⌧)

2. Soundness of inference rules

(a) Sound.
• The inference rule is sound iff 8x.Thing(x) ✏ 9x.Thing(x). That

is, if for every model M such that ✏M 8x.Thing(x), ✏M 9x.Thing(x).
• Let M be some arbitrary model. ✏M 8x.Thing(x) iff for all v.a.
U and all d 2 D, ✏M Thing(x)[Ux:d] [truth conditions of 8]

• If this is true, however, then it follows that for all v.a. U and
some d 2 D, ✏M Thing(x)[Ux:d]

• This is true iff ✏M 9x.Thing(x) [truth conditions of 9]
• Therefore, for some arbitrary model M such that ✏M 8x.Thing(x),
✏M 9x.Thing(x). Hence, 8x.Thing(x) ✏ 9x.Thing(x), so the in-
ference rule is sound.

(b) Unsound.
• The inference rule is sound iff Dog(Snoopy) ✏ 9x.Animal(x). To

show that this is false, it suffices to find some model M such that
✏M Dog(Snoopy) but 2M 9x.Animal(x).

• One such model is D = {one}, SnoopyI = one, Dog
I = {one},

Animal
I = {}.

• ✏M Dog(Snoopy) iff Snoopy
I 2 Dog

I , iff one 2 {one}, [truth
conditions of predicates], which is true.

• 2M 9x.Animal(x) iff it is not the case that for all v.a.’s U and
for some d 2 D, Animal(x)[Ux:d] [truth conditions of 9], iff it is
not the case that for some d 2 D, d 2 Animal

I , iff it is not the
case that for some d 2 D, d 2 {}, [truth conditions of predicates],
which is true.

3

• Therefore, there exists a model M such that ✏M Dog(Snoopy)
but 2M 9x.Animal(x). Hence, Dog(Snoopy) 2 9x.Animal(x),
so the inference rule is unsound.

3. Deduction using several forward inference rules

1. Loves(Juliet, Romeo) �

2. (8x(8y(Loves(x, y) _ Ignores(x, y)))) �

3. (8x(Loves(x,Romeo)) ¬Ignores(Romeo, x))) �

4. (8y(Loves(Romeo, y) _ Ignores(Romeo, y))) UI, 2
5. Loves(Juliet, Romeo)) ¬Ignores(Romeo, Juliet) UI, 3
6. Loves(Romeo, Juliet) _ Ignores(Romeo, Juliet) UI, 4
7. ¬Ignores(Romeo, Juliet) MP, 1, 5
8. Loves(Romeo, Juliet) MTP, 6, 7
9. (9x(Loves(Romeo, x))) EG, 8

4. Unifiers, resolvents, factors

(a) Starting with both argument lists:

1. (x, f(x), g(y))

(g(f(A)), z, g(z)) ;

2. (g(f(A)), f(g(f(A))), g(y))

(g(f(A)), z, g(z)) (x/g(f(A)))

3. (g(f(A)), f(g(f(A))), g(y))

(g(f(A)), f(g(f(A))), g(f(g(f(A))))) (x/g(f(A)))(z/f(g(f(A))))

4. (g(f(A)), f(g(f(A))), g(f(g(f(A)))))

(g(f(A)), f(g(f(A))), g(f(g(f(A))))) (x/g(f(A)))(z/f(g(f(A))))(y/f(g(f(A))))

The m.g.u.:

(x/g(f(A)))(z/f(g(f(A))))(y/f(g(f(A))))

(b)

1. Q(y) _ ¬P (u, f(f(y))) r[1a, 2a] with (x/f(u))(v/f(y))

2. Q(v) _ ¬P (f(u), v) r[1a, 2b] with (x/u)(y/v)

4

Pranay Mundra

